Persistent Al

Powerful Orchestration Engine
for Telegram Native Use

February 2026



Table of Contents

Summary
TL;DR
Key Takeaways
Overview
Node-Based Intelligence: Bidirectional Transformation
The AG-UI Protocol: Generative Interfaces
Durable Execution via DBOS
The Agent Economy: Inference Tokenization
The Participation Economy
The Problem with Traditional Monetization
Agent NFTs: Liquid Ownership of Intelligence
The x402 Payment Protocol
Network Effects and Market Dynamics
Conclusion: The Path Forward
Appendix 1: Use Cases in Detail
Use Case 1
Use Case 2
Use Case 3
Appendix 2: UIO Explained
From User Experience to UIO - the Agentic Experience
Why Telegram is the Ideal Platform for UIO
Understanding the Current TMA Landscape
The Developer's Burden
The Monetization Vacuum
User Intent Orchestration: The Single-Thread Experience
Appendix 3: Technical Architecture Deep Dive
The Flow-Based Programming Paradigm
The Node Catalog: 146+ Capabilities
Port-Based UI Binding
Comparison with Traditional Approaches
The GenAI Platform Alternative
Deterministic Execution and Auditability

The Verifiable Execution Stack

O U1 B~ W W

11
12
15
15
15
16
17
18
20
21
21
23
26
28
28
28
29
29
30
31
32
32
33
34
39
39
36
36



Summary

PersistentAl is a Telegram-native agentic intent engine - what OpenClaw pioneered for personal AI assistants,
extended with deterministic orchestration, native micropayment settlement (x402), and on-chain auditability
(TetraChain). If OpenClaw made Telegram a place where Al acts on your behalf, PersistentAl makes it a place
where Al agents transact, compose, and settle - with every step metered, every creator paid, and every
execution formally verified.

As enterprise analyst Matt Slotnick recently argued, the most valuable systems of the coming decade will shift
from managing records of what things are to orchestrating intent around what needs to happen - from objects
to objectives. PersistentAl is the Telegram-native embodiment of this shift: a system of intent for the 950M-user
messaging economy, where user objectives are decomposed into deterministic execution graphs, every
settlement, inference and execution being settled on-chain.

TL;DR

PersistentAl provides a deterministic orchestration layer that bridges the gap between probabilistic
foundation models and mission-critical applications. Built on a Haskell core, the platform enforces formal
verification and exactly-once execution semantics via DBOS, eliminating the hallucination and non-
determinism risks inherent in generative Al. This architecture enables the deployment of Al agents in high-
stakes sectors like finance and identity, where structural reliability is a non-negotiable requirement.

Technical Architecture & UIO

The platform utilizes Telegram as its primary context substrate, resolving UX fragmentation through User
Intent Orchestration (UIO). Using a bidirectional transformation primitive, PersistentAI disaggregates Mini
Apps (TMAs) and data sources into atomic Nodes with strictly defined fields and input/output ports. These
nodes are recomposed into unified execution graphs managed by an Orchestration Agent that decodes multi-
layer user intents and coordinates specialized task delegation across the network.

The Agentic Economy & Settlement Layer

The Agentic Settlement Layer (ASL), powered by TetraChain, serves as the high-throughput payment rail for
the ecosystem. Every node operates as an independent economic agent via an x402 port, facilitating
autonomous, per-inference micropayments. This framework enables the tokenization of inference, where Al
logic and datasets are represented as NFTs with automated revenue splits settled instantaneously on-chain
between providers, creators, and owners.

Verification and Interface Standards

To maintain execution integrity, the AG-UI protocol renders dynamic, context-aware interface components as
deterministic wrappers around node outputs, preventing bug propagation within the chat thread. Privacy is
maintained via Trusted Execution Environments (TEE) for private inference, ensuring sensitive data remains
shielded from model providers. All operations are immutably logged on TetraChain, providing a formally
verified audit trail that guarantees absolute alignment between user intent and system execution.


https://mslotnick.substack.com/p/intention-is-all-you-need

Key Takeaways

1.

10.

11.

12.

13.

Contemporary Al stacks lack a deterministic orchestration layer between probabilistic foundation models
and end-user applications, resulting in fragmented UX that is simultaneously ill-suited to high-risk
domains.

. PersistentAl provides this layer: a Haskell-core, formally verified, deterministic execution environment

for Al agents - essential where hallucination and non-determinism are unacceptable.

. Our core value proposition is the provision of a rich substrate for User Intent Orchestration (UIO). UIO

refers to the on-going shift from reactive, fragmented navigation to proactive, intent-driven fulfillment of
user intents via autonomous agents.

. Telegram is the optimal environment for UIO: a superapp rich in contextual surface, yet fragmented

across hundreds of bots and mini-apps (TMAs). PersistentAl resolves this via bidirectional transformation
- any TMA, app, or data source becomes a PersistentAl node (autonomous, economically self-sovereign
agent); and vice versa - any agentic flow can be deployed as a TMA.

. Nodes are atomic, each with defined I/O ports and an x402 payment port. They compose into unified

execution graphs: a single user intent triggers deterministic traversal across requisite nodes.

. The AG-UI protocol renders context-aware interface components (product cards, comparisons,

confirmations) directly in the chat thread - deterministic wrappers around node outputs, not probabilistic
bug-prone ‘vibe-code’.

. DBOS guarantees durable, exactly-once execution for mission-critical flows (irreversible transactions,

financial operations, critical fact checks, etc.).

. Every node is an independent economic agent. Nodes charge per-inference micropayments via x402;

inference tokenisation enables price discovery at micro-scale, creating a liquid marketplace for
intelligence. Each inference triggers automated, instant payment splits across model providers, node
creators and/or owners, data providers (e.g. RAG maintainers), and protocol treasury - all settled on high-
throughput TetraChain.

. TetraChain powers the Agentic Settlement Layer (ASL): a high-throughput, low-latency payment rail for

Agent-to-Agent, Human-to-Agent, and Agent-to-Human transactions, enabling trustless interaction with
programmable money and DeFi.

Every interaction and execution step is immutably recorded on TetraChain, producing a formally verified
audit trail that guarantees all actions remain strictly aligned with original user intent.

Trusted Execution Environments (TEE) enable private inference on sensitive data without exposure to
LLM providers; on-premise deployment satisfies more nuanced privacy requirements, such as those
required for regulatory compliance.

When it comes to UIO, however, the ultimate abstraction is the Unified Chat Interface: a single,
continuous, persistent, context-aware thread. An Orchestrator (chat-specific assistant agent) decomposes
intents, delegates to specialized Agents (indexers, settlement rails, DeFi primitives), and renders dynamic
UI via AG-UI.

Instantiation: UIO in practice. A user types a complex, multi-constraint request into Telegram - e.g.,
purchase of a technical product with specific components AND automatic cashback conversion to Bitcoin.
PersistentAl decomposes this into an execution graph of dozens of autonomous nodes: inventory scrapers,
compatibility verifiers, pricing oracles, payment authorisers, cashback detectors, YouTube scrapers, and
crypto-swap engines. All execute in parallel, settle micropayments across each economic actor, and
render an interactive, auditable receipt - all within the same chat thread, in under 90 seconds.



14. Telegram’s unique density of integrated contexts - public channels, private chats, group discussions, and a
rich ecosystem of transactional mini-apps-constitutes a semantic factory floor where user intents can be
expressed, contextualised, and acted upon. No other platform possesses this combinatorial richness of
social graph, payment rails, and lightweight application distribution.

15. The user never leaves Telegram, never pastes an address, never manually sweeps a reward. The interface
is alive; the economy is embedded; the intent is formally satisfied.

16. Conclusion: When Telegram is instrumented as the execution substrate for User Intent Orchestration, the
messenger transcends its chat origins to become a Universal Intent Interface. Every inference is metered,
every creator is instantly paid, every step is immutably recorded on TetraChain, and every intent is
formally proven satisfied. The old paradigm of navigating fifty browser tabs, ten apps, and three wallets
collapses into a single continuous conversation with persistent context.

This, however, is only possible at scale and for a wide range of use-cases if and only if the orchestration is
deterministic. With PersistentAl it is.

Overview

PersistentAl Enables Formal AI Orchestration

PersistentAl, a deterministic orchestration layer for Al Agents, serves as a critical infrastructure for
maintaining control, context, and auditability of the underlying core Al infrastructure. In laymen terms, it
serves as the central nervous system integrating any ecosystem built with or around Al-powered primitives,
semantic, programmatic, user-generated or algorithmic, probabilistic or deterministic.

It is the layer in the Al stack that sits between the foundational models like GPT or Claude and the app layer
that end-users (and Agents) interact with. But as we demonstrate below, the execution layer can also integrate
the apps into a single UX creating a de-facto higher level abstraction in the Al stack. We will elaborate upon
this below.

The platform enforces formal verification through its Haskell core and Deterministic Execution - a critical
feature in high-risk execution environments, such as finance-related applications or apps making use of
sensitive user data. The Haskell core functions as the logic compiler and formal verification engine, which
generates execution-ready tasks for the DBOS-managed worker nodes. As for the former, PersistentAl ensures
reliability in AI-powered financial operations mitigating the risks inherent in frequently hallucinating
probabilistic Al. This architecture transforms context-rich platforms into factories for bespoke intelligence,
integrating among other things:

Summary

1. Agent Runtime & Orchestration: PersistentAl provides the visual workflow builder and execution engine
for coordinating multi-Agent logic, tool integration, and complex, event-driven pipelines.

2. Settlement Infrastructure: Powered by TetraChain (TON Layer 2), Agentic Settlement Layer (ASL) provides
the high-throughput, low-latency payment rail for Agent-to-Agent (A2A), Human-to-Agent (H2A) and Agent-
to-Human (A2H) transactions, supporting private identity, KYC delegation, Agent registries and compliance
via zero-knowledge proofs.



PersistentAl’s integration of a high-performance settlement layer with its orchestration engine is a key
differentiator. It provides the deterministic payment rail required for Agents to interact trustlessly with
programmable money and DeFi primitives.

This enables the seamless, automated financial compositions-from simple Agentic purchases to complex
structured products-that represent the next frontier of financial services.

« Payment Rails and Settlement: Utilization of x402 as a primary internet-native payment layer, enabling high-frequency,
low-latency settlement for transactions with or between agents.

« Permission Orchestration: Implementation of the AP2 (Agent Payments Protocol) for managing mandates, ensuring
every financial action is cryptographically signed and placed on-chain and stays within user-defined bounds.

 Indexing Infrastructure: Integration with The Graph and Alchemy to maintain real-time awareness of blockchain states
through high-fidelity data feeds.

« Asset Support: Out-of-the-box functionality for transferring ERC-tokens and native assets across all EVM-compatible
networks.

« Chain-Agnostic Operating System: A comprehensive architectural approach that provides a unified financial operating
system for Al across multiple blockchain ecosystems.

3. DeFi & Traditional Protocol Mesh: Connectivity to DeFi primitives and legacy financial gateways, enabling
hybrid product composition. Structured products sourcing liquidity from DeFi enable unparalleled diversity
of financial products, opening new revenue streams for banks, neobanks and wallets.

4. Identity & Compliance Layer: A unified system managing decentralized identity (DID), user consent, and
regulatory adherence. This allows for compliant DeFi operations and delegating financial operations to Al
Agents.

5. Secure computation: Deployed on-premise and utilizing TEE for inference, PersistentAl enables security of
user data allowing for integration of sensitive datasets originating from 3rd party platforms. Private
inference will become a significant compliance requirement in most jurisdictions and also a growing
demand from privacy-mindful users.

However, the core value proposition of PersistentAl lies elsewhere. Enter User Intent Orchestration (UIO)".

Output

I

l:l TRUSTED EXECUTION ENVIRONMENT (TEE)

Public Data / Www Private Data
DeFi_Prinitives Marketplaces Analytics (X)
3 ; Telegram and other chats
g Lending_posts i seay Boskshain Persistent Al
2 oo Nansenm, Defillama, TohenTerminal
= WEClire s BXAEEOI Englng MetaMask and other wallets
5 31 -
=l 5 3 Anazan Traditiona 1 Apps
Derdvati
erivatives L .
e, b Shoplfy ® Hemory_Encryption ® Attestation DEXs & CEXs trading history
a Staking W Tamu
) o ® Isolated Execution @ Audit_Logging
) Banking app data
1] Bridges il ALiExpress
® Dr-l s Sensitive_data_never_leaves this secured

®  gn-remise boundary Netflix, Amazon usage data

!

User Intent

Fig1: User Intent Orchestration (UIO)

! Refer to Appendix 2 for a detailed discussion about UIO.



Benefits of User Intent Orchestration (UIO)

« More seamless, intent-driven experience  Secure execution via TEE - combining on-
across the entire Telegram ecosystem - no app chain state, private user data, and third-party
switching, no manual aggregation. feeds into a single deterministic inference.

« More powerful user interactions in one chat « Wider range of attainable actions from DeFi
multiple TMAs and data sources are execution to agentic commerce, all without
coordinated in a single thread. leaving the chat.

Fig2: Benefits of User Intent Orchestration

6. UIO - Solving User Intents: Front-end AI Agents (those augmenting end-user experience) are evolving into
autonomous co-pilots, managing among other things personal finances and executing transactions, which
shifts the banking relationship to delegated agency and risks disintermediation by third-party platforms.
Already today Al systems can drastically improve user experience across a wide range of applications
starting from personal finance, research, personalized medical consulting, lending, and, notably, e-
commerce and intent-driven banking.



THE FRAGMENTATION PROBLEM

® TODAY: User Must Switch Between Multiple Apps

USER INTENT: "I want to invest $5080 in crypto with balanced risk and monthly income"

User must : Portfolio Tracker ry ¥Yield Aggregator : Risk Analyzer
switch App ' App : App
Wallet Manager Bridge App Analytics Tool

&+ different apps, constant context switching

User manually aggregates data, makes calculations

WITH PERSISTENTAI: One Unified Interface

USER INTENT: "I want to invest $5008 in crypto with balanced risk and menthly income”

User Single Thread

PersistentAl orchestrates:

= Risk assessment across protocols » Portfolio rebalancing analysis

= Yield optimization (staking + lending) » Multi-chain execution planning

SIGNALS PROCESSED:

Arthur Hayes blog (latest 3)
-+ Bullish ETH, cautious alts

« Nansen: Smart money net long ETH, reducing stablecoin pos
DeFilLlama: Morpho TVL +34% in 30d, yilelds compressing

« Macro: Fed pause = risk-on

RECOMMENDED :

40% ETH staking [Lido] 20% BTC DCA
30% USDC lending - 10% Alt basket

Est. 8.3% APY - Risk: Medium

Execute Plan

Fig3: The Fragmentation Problem



The Emergence of Intents as Dominant UX Paradigm: As Al becomes more and more relevant in each
individual's life, it becomes increasingly important to provide users with not only comfortable UX (we call
this term AX - Agentic Experience in the context of AI) but also ways to participate in the emerging
economy.

Telegram is the Perfect Intent Substrate: Telegram has already become not just a messenger but the true
"Everything App" where users chat, transact, get information, etc. It therefore possesses one of the richest
substrates for encapsulating user intents - in other words, many different everyday user scenarios can be
navigated through using Telegram’s existing functionality.

Telegram Does not yet Work with User Intents: Telegram is the optimal substrate: a superapp rich in
contextual surface, yet fragmented across hundreds of bots and TMAs. PersistentAl resolves this via
bidirectional transformation-any TMA, app, or data source becomes a PersistentAl node (autonomous,
economically self-sovereign agent); any agentic flow built in the platform deploys as a TMA.

The Process of Fulfilling One’s Intent is Costly: For a user to express their intent they have to navigate
across this diverse set of sources, or switch to a different app altogether, i.e. a process of expressing an
intent is spread across multiple interfaces inside (and outside) of Telegram, making the experience
fragmented, inconvenient and frequently error prone.

Development of TMAs is Also a Costly Process: For those not possessing sufficient development expertise
TMAs are hard to build. This restricts many enthusiasts who might have interesting ideas but just cannot
wrap them into the working product.

Enter PersistentAl: PersistentAl addresses these hurdles by allowing developers and users to transform
traditional TMAs into PersistentAl nodes. These nodes function as autonomous Al Agents that operate
within a deterministic orchestration layer. This process is bidirectional: any existing TMA can be turned
into nodes to join the ecosystem, and any AI Agent flow created within the platform can be deployed as a
functional TMA.

PersistentAl integrates existing TMAs, public groups, 3rd party apps, and even user private data into a
deterministic Al orchestration layer to proactively solve user intents.

Node-Based Intelligence: Bidirectional Transformation

PersistentAl's core innovation is treating every computational capability as a node within a
deterministic orchestration layer. These nodes function as modular building blocks that can be
composed into complex Al Agents. The system supports bidirectional transformation:

TMA - PersistentAl Node: Any existing TMA can be converted into a Node to become part of the
PersistentAl ecosystem. This process involves:

1. Wrapping the TMA's API endpoints as node 3. Registering the node in the PersistentAl
interfaces catalog

2. Defining input and output ports that other 4. Setting pricing for node usage (if the creator
nodes can connect to chooses to monetize)

This means existing TMA developers can enhance their applications with Al capabilities without
rebuilding from scratch. A weather TMA becomes a weather node. A payment TMA becomes a
payment node. The functionality is preserved but becomes composable.




PersistentAI Agent > Deployed TMA: Conversely, any Al Agent flow created within PersistentAl can be
deployed as a functional TMA. The platform automatically:

1. Generates a web interface that adheres to 4. Manages state persistence across user sessions

Telegram's WebApp standards 5. Deploys the TMA to PersistentAl's

2. Handles authentication and user context infrastructure (or the developer's preferred
management hosting)

3. Provides default UI components or renders
custom AG-UI components

This bidirectional capability creates network effects: each new node increases the value of the entire
ecosystem, and each deployed TMA can potentially become a node for other developers to build upon.

4/

TURNING TMAs AND 3RD PARTY APPS INTO NODES
ANY APPLICATION CAN BECOME A PERSISTENTAI NODE
T Uniswap DEX Node
Uniswap Widget 4" « Input: Token pair
* Dutput: Quote, route
Nansen AI Analytics Node
Nansen API Input: Wallet add
* Qutput: Smart money
L DeFillama Protocol Node
Defillama API Input: Chain, proto
« Dutput: TVL, yields
MetaMask Wallet Node
_’ I 'k c|
MetaMask Snap/Bot tongr: TS A
« Qutput: Balances
""" L Proprietary Trading History MNode
—p s RS | RSO ) e
Ussr's Portfolic Data Input: User consent
 Dutput: Tx history
Fig4: Turning TMAs and 3rd Party Apps into Nodes
This is UIO in practice.

10



The AG-UI Protocol: Rather than static interfaces, the AI Agents propose context-aware Ul components-
such as charts, forms, or product cards-that are rendered in real-time within the Telegram interface,
creating a seamless and intuitive AX. Critically, every front-end element is a deterministic wrapping around
the existing output nodes’ ports and fields - not bug-prone agentic code.

A simple takeaway is that when turned into PersistentAl nodes, TMAs functionality can be composed into
a unified execution graph, augmented with 3-rd party data sources and capabilities. At the same time, the
output nodes of the said graph can themselves be rendered to have generative interfaces.

\_

The AG-UI Protocol: Generative Interfaces

The Agent-Generated Ul (AG-UI) Protocol represents a paradigm shift in how interfaces are
constructed. Traditional applications have static interfaces defined at compile time. The developer
decides what buttons exist, where they're located, and what happens when clicked. Users adapt to
whatever interface the developer created.

AG-UI inverts this relationship. The AI Agent analyzes:

1. User intent expressed in natural language
2. Current context (conversation history, user preferences, environment)
3. Available data (from databases, APIs, blockchain state)

4. Appropriate visualization methods

Based on this analysis, the Agent proposes Ul components dynamically. These proposals take the form
of structured JSON describing the component type, data to display, and interactive behaviors. The
frontend receives these proposals, validates them against allowed component types (for security), and
renders them in real-time.

This creates several advantages:

1. Context Awareness: The same query produces different interfaces based on context. "Show me my
portfolio" might render a summary card for a quick check or a detailed dashboard when the user is
in analysis mode.

2. Data-Driven Design: Ul components reflect actual data structure rather than forcing data into
predetermined templates. If a user's portfolio has three tokens, the interface shows three items. If
they have fifty tokens, the interface adapts (perhaps with grouping, filtering, or pagination).

3. Progressive Disclosure: The Agent can start with a simple interface and add complexity only when
needed. This prevents overwhelming users with options while keeping advanced functionality
accessible.

4. A/B Testing at Scale: Different users can receive different UI proposals, and the system can learn
which interfaces lead to better outcomes (task completion, user satisfaction, conversion).

5. Multilingual by Default: Since the Ul is generated from structured data rather than hardcoded text,
localization becomes trivial. The same backend can generate interfaces in any language.

J

« UIO for Paradigm Shift in User Experience: integrating data and TMAs into PersistentAl allows for a single

user intent to trigger a specific execution across the necessary nodes. Every interaction and execution step
is registered on TetraChain, ensuring that the cost, source, and, ultimately, intent of each inference is
transparent, auditable, and can be formally verified and monetized.

~

11



« Guaranteed Durability via DBOS: Robustness is guaranteed through Durable Execution (via DBOS), which
ensures that complex Agentic flows survive infrastructure failures and maintain "exactly-once" operation
semantics. This is critical for mission critical environments, such as financial operations (banking apps),
operations with irreversible blockchain transactions, composing structured products and other similar
applications.

Durable Execution via DBOS

The technical foundation enabling reliable UIO is DBOS (Database-Oriented Operating System), a
durable execution framework that guarantees exactly-once operation semantics. This is crucial for
high-stakes operations like financial transactions.

Traditional server applications are ephemeral. If the server crashes mid-transaction, the state is lost.
The system might:

1. Complete part of a multi-step operation, leaving the user in an inconsistent state
2. Retry the entire operation, potentially charging the user twice

3. Fail silently, requiring manual intervention to determine what happened

DBOS eliminates these failure modes through continuous checkpointing. Every step of every workflow
is persisted to PostgreSQL before proceeding to the next step. This creates several powerful
guarantees:

1. Exactly-Once Execution: Even if the server crashes and restarts multiple times, each operation
executes exactly once. Idempotency is guaranteed at the system level rather than requiring
developers to implement it in application code.

2. Durable Waiting: An Agent can wait indefinitely for external events-user confirmations, blockchain
transactions, webhook callbacks-without occupying server resources. The workflow state is
persisted, and execution resumes automatically when the awaited event occurs.

3. Time-Travel Debugging: Because every state transition is recorded, developers can "replay" any
execution to understand exactly what happened. This is invaluable for debugging complex multi-
step operations.

4. Automatic Recovery: Infrastructure failures (server crashes, network partitions, database restarts)
are handled transparently. Workflows resume exactly where they left off with no data loss.

5. Verifiable Execution: The complete execution trace can be exported and verified by third parties.
This is essential for compliance, auditing, and dispute resolution.

o

« X402, RAG, AP2: Agentic Each node or Al Agent is equipped with an x402 module, facilitating an "Agent
Economy" through instant payments. For example, a creator who develops a specialized Twitter RAG
(Retrieval-Augmented Generation) Agent can monetize it directly by receiving, for example, 10% of every
inference cost that utilizes the data one has stored and offered for use. Every time a user triggers an
inference from that Agent, the creator receives funds instantly. PersistentAI acts as the "Facilitator" or
"Resource Server" in the x402 flow.

« The ultimate "end product" is one unified chat interface where the user simply expresses their intent.
Instead of navigating a fragmented landscape of individual bots - the old reactive paradigm, the user
interacts with a single, intelligent thread powered by the collective intelligence of the entire Telegram
ecosystem - the new soon to be dominant proactive (or intent-driven) paradigm.

12



PERSISTENTAI ORCHESTRATION FLOW

(Intent-Driven Generative UI via MCP Standard)

STEP 1: Multi-Source MCP Servers (TMAs, Analytics, DeFi)

Blum Nansen TONScan Wallet DeDust
[TMA] [Analytics] [Explorer] [ TMA ] [DEX]
| | l | I
FireFlow: MCP ADAPTER
(Universal Tool & Resource Normalization)
Atomic Action Node Library (12 Nodes)
get_balance get_portfolio scan_yield get_token
_composition _opportunities _prices
calculate_risk estimate_gas simulate_swap claim_rewards
_score
swap_tokens provide_ transfer get_analytics
liquidity _insights

STEP 3: Output Nodes - Generative UI

User: "Optimize my yield across chains with <5% risk"

}

Intent Parser (LLM)

!

Protocol APY Scan

[DeDust]
[STON. 1] LTON]

Risk Scorer
[Risk]
[Calc]

I

Strateqgy Optimizer

Wallet Balance
[ BLum]

Gas Estimator

« Route Planning
« Risk Assessment

« APY Calculation

!

Output Nodes

(Data)
!

LLM Reasoning



Output Nodes

LUaLa

LLM Reasoning

(Process Data)

AG-UI Generator

'

Generative Interface

@ OPTIMIZED STRATEGY

1. STON.fi TON/USDT Pool

APY: 24.3%

Risk: 2.8% (Low)
Allocation: 20 TON
Gas: ~0.28 TON

2. DeDust BLUM/TON Pool

APY: 18.7%
Risk: 4.1% (Medium)
Allocation: 408 BLUM
Gas: ~B.6 TON

Total Est. APY: 21.5%
Portfolio Risk: 3.4%
Total Time: ~5-10m

Simulate Edit

User interacts with context-aware, dynamically generated UI

STEP 4: Execution Layer (When User Confirms)

User clicks [ EXECUTE ALL ] - Transaction Sequencer activates

Transaction Sequencer

1. estimate_gas (all operations)
2. simulate_swap (validate)
5. Execute atomic transactions:
« swap_tokens (TON-USDT)
» swap_tokens (BLUM-USDT)
» provide_liquidity (STON)
4. Update portfolio state

Fig5: PersistentAl Orchestration Flow

14



7. PersistentAl Enables Inference Tokenization: By enabling the tokenization of Agents, individual nodes or
datasets as NFTs, PersistentAl enables a marketplace for data and intelligence. Technically, every inference
graph is decomposed into individual nodes, their inputs (like RAG’ed twitter feed for example) and outputs.
Every node in the execution graph has a x402 port allowing it to act as an independent economic agent -
every time an inference is made through it, a payment distribution is triggered across the creator, the
current owner and other participants in the value chain, such as data providers. Transactions are almost
instantaneous thanks to high throughput TetraChain.

This allows for price discovery, royalties and other revenue-sharing models rewarding creators efficiently,
fairly and instantly.

The fee is automatically split via the x402 payment protocol across all contributors. An example split could be:

* 50% to to model providers (Anthropic, OpenAl, Cocoon etc. for LLM API calls)

* 10% to node creators (developers who built the individual nodes used in the Agent's flow)
¢ 10% to node owners (those owning the node NFT)

* 15% to original agent creator

* 10% to data providers (APIs, oracles, blockchain indexers that supply data)

* 5% to protocol treasury (ecosystem development and grants)

The Agent Economy: Inference Tokenization

The Participation Economy

The most successful platforms of the coming decade will not merely provide superior user
experiences-they will enable users to participate in value creation and capture. This is the core thesis
of the participation economy: users should not only consume services, but also benefit economically
from their engagement and contributions.

PersistentAl embeds this principle at the architectural level. Every interaction generates value that
flows to multiple stakeholders:

1. Users receive intelligent services that save 3. Node operators receive compensation for
time and improve decisions providing computational infrastructure

2. Creators earn revenue when their Agents/ 4. The protocol sustains itself through a modest
Nodes are used treasury allocation

This creates aligned incentives across the ecosystem. Creators are motivated to build high-quality
Agents because they profit from usage. Users benefit from a competitive marketplace of Agents.
Node operators ensure infrastructure reliability because their revenue depends on uptime. The
result is a self-sustaining economic system that grows more valuable as adoption increases.

The Problem with Traditional Monetization

As discussed earlier, traditional monetization models for TMAs are inadequate. But the problem runs
deeper than mere technical limitations-it's a fundamental misalignment of incentives.

When monetization requires degrading user experience (ads, paywalls, data harvesting), creators face
an impossible choice: build something users love and go broke, or implement monetization tactics
that alienate your audience. This tension has plagued the internet for decades, leading to:




1. The "attention economy" where apps compete to be addictive rather than useful
2. Privacy violations as user data becomes the product
3. "Dark patterns" that trick users into unwanted subscriptions

PersistentAl's Agent NFT economy solves this by aligning all stakeholders through transparent, usage-
based revenue sharing.

Agent NFTs: Liquid Ownership of Intelligence

When a creator builds an AI Agent on PersistentAl and chooses to monetize it, the Agent is minted as
an NFT (Non-Fungible Token) on the TetraChain blockchain (a Layer 2 on TON). This NFT represents
ownership rights to the Agent's future revenue stream.

The economic structure is straightforward and transparent:

When a user interacts with an Agent and triggers an inference (e.g., asking for product
recommendations, requesting market analysis, executing a trade), a small fee is charged. This fee is
automatically split for example as follows:

. 50% to to model providers (Anthropic, OpenAl, Cocoon etc. for LLM API calls)

. 10% to node creators (developers who built the individual nodes used in the Agent's flow)
. 10% to node owners (those owning the node NFT)

. 15% to original agent creator

. 10% to data providers (APIs, oracles, blockchain indexers that supply data)

. 5% to protocol treasury (ecosystem development and grants)

A U1 o W N =

This structure creates several powerful dynamics:

Sustainable Creator Income: Creators earn revenue proportional to how useful their Agents are. A
highly valuable Agent generates recurring income without requiring the creator to engage in
salesmanship, advertising, or aggressive monetization tactics.

Tradeable Assets: Agent NFTs can be bought and sold on open marketplaces. If a creator builds an
Agent that becomes popular but wants to cash out, they can sell the NFT to another party. The
purchasing party evaluates the Agent's usage metrics and projects future revenue to determine a fair
price.

Incentive Alignment: Because the original creator retains a royalty, they benefit even after selling the
NFT. This means they're incentivized to keep the Agent's reputation intact and potentially contribute to
its ongoing development.

Transparent Valuation: All usage metrics are on-chain and publicly auditable. Anyone evaluating an
Agent NFT can see:

1. Total number of inferences executed

2. Revenue generated over various time periods

3. User retention metrics (how many users return to the Agent)

4. User satisfaction scores (if reputation systems are implemented)

Composability: Since Agents can call other Agents, revenue flows through the system. If Agent A uses
Agent B as a component, Agent B's NFT holder earns a share of the transaction. This incentivizes
building high-quality, reusable components.

16



The x402 Payment Protocol

To enable instant micropayments for Agent inferences, PersistentAl integrates the x402 payment
protocol (originally developed by Coinbase). This protocol facilitates instant, low-friction payments
between Agents and users, as well as between Agents themselves.

Traditional payment systems introduce latency (credit card processing takes days to settle) and high
fees (merchant fees of 2-3% make micropayments uneconomical). Cryptocurrency transactions are
faster but still introduce friction-users must sign transactions, pay gas fees, and wait for block
confirmation.

The x402 protocol solves this through payment channels and optimistic settlement:

1. Users deposit funds into a payment channel when first interacting with an Agent ecosystem
2. Individual inference fees are deducted instantly from this channel balance

3. Settlement to the blockchain happens periodically in batches, minimizing transaction costs
4. Dispute mechanisms ensure users can't be cheated even with optimistic settlement

For users, this means:

1. No transaction signing for every inference
2. Predictable costs disclosed upfront

3. Ability to set spending limits

4. Instant access to Agent capabilities

For creators, this means:

1. Instant revenue (not waiting for monthly payouts)

2. Micropayments that would be uneconomical with traditional systems become viable
3. Automatic split payment to all stakeholders

4. No payment processor fees eating into revenue

Network Effects and Market Dynamics

The Agent NFT economy creates powerful network effects that accelerate ecosystem growth:

17



Network Effects and Market Dynamics

The Agent NFT economy creates powerful network effects that accelerate ecosystem growth:

Flywheel 1: Creator Success Attracts More Creators

1 Early creators build svccessful Agents and earn meaningful revenue
2 This success attracts other creators to the platform
3 More Agents increase platform vutility, attracting more users

4 More users create demand for more specialized Agents

.

Flywheel 2: Agent Composition Increases Value

1 As more Agents exist, the value of composition increases
2 Developers can create sophlsticated workflows by combinlng exlsting Agents
3 This reduces development time and increases quality

4 Successful compositions generate revenue for all component Agents

Flywheel 3: Data Network Effects

1 Agents learn from vser interactions and improve over time
2 More usage generates more training data (with appropriate privacy safeguards)
3 Better Agents attract more users

& The feedback loop accelerates improvement

Fig6: Network Effects and Market Dynamics

Market Maturation: Over time, we expect several market structures to emerge:

1. Agent Marketplaces: Platforms for 3. Agent Improvement Services: Specialized
discovering, evaluating, and purchasing Agent developers who purchase underperforming
NFTs Agents, improve them, and capture value

through the equity upside
2. Agent Portfolios: Entities that own diversified

collections of Agent NFTs, similar to 4. Agent Derivatives: Financial instruments
intellectual property portfolios based on expected Agent revenue (similar to
music royalty securitization)




REVENUE DISTRIBUTION PER INFERENCE

(Smart Money Tracking Agent)

USER TRIGGERS INFERENCE

"Alert me when top Ethereum wallets accumulate tokens similar to my portfolio"

|

Fee: $2.50
I

X402 Payment Module

LInstant Distribuotion)

.

Agent Owner Node Creators Model Provider Data Providers
$1.00 $0.75 $0.375 $0.25
(46%) (30%) (15%) (16%)
Huilt The sparc Lreated speclallzed LLavde GPT -4 BTG NENSEN, Oune

gy tracker NoOOEs MNAaLYTICS

EXAMPLE: Smart Money Tracker Agent Flow

NODES USED REVENUE SPLIT
1. LLM Node (Claude) 15% to Anthropic
2. HNansen Wallet Tracker 5% to Nansen

E Dune Analytics Query _. 5% to Dune
4. Portfolio Similarity Calc 15% to Node Creator A
5. Pattern Recognition ML 15% to Node Creator B

&. Alert System ., b% (platform node)

Agent Dwner (orchestrated flow)

Protocol Treasury

COMPOSABILITY EXAMPLE:

This Smart Money Agent can become a node itself:

Another developer builds "Auto-Copy Trading Bot"

-+ Uses Smart Money Agent as a component

- Original Agent owner earns from every copy trade
-+ Creates recursive value flow

Fig7: Revenue Distribution per Inference

Protocol Treasury

$0.125

(5%)

48% of inference fee

5% of inference fee

19



8. The Unified Intent Interface: Orchestrating Agent and Secure Fulfillment

The architecture of PersistentAI consolidates fragmented bot ecosystems into a Unified Chat Interface,
replacing the friction of switching between disparate applications with a continuous, context-aware thread. An
Orchestration Agent acts as the central "General Manager" to streamline this process:

 Intent Decoding: It parses multi-layered user requests to understand complex financial or logical goals
beyond simple keyword recognition.

« Modular Delegation: It programmatically coordinates specialized "Worker Agents"-such as data indexers or
settlement rails-to execute a sequence of actions.

« Dynamic UX: Using the AG-UI protocol, it renders real-time interface components, like transaction cards or
charts, directly within the chat as needed.

The system achieves "smart" fulfillment through Trusted Execution Environments (TEE), which enable high-
fidelity intelligence while maintaining strict privacy. This secure layer ensures that user intent is handled with
both precision and transparency:

 Private Data Integration: The agent analyzes sensitive records, such as personal financial history, without
exposing raw data to LLM providers or external networks.

« Proactive Intelligence: By combining private context with real-time blockchain state data, the system can
suggest or execute optimized actions based on a holistic understanding of the user’s situation.

« Formal Verification: Every step is recorded on TetraChain, providing a formally verified and auditable trail
that ensures actions remain strictly aligned with the original user intent.

Conclusion: The Path Forward

1. PersistentAl addresses a fundamental deficiency in the contemporary Al stack: the absence of a
deterministic orchestration layer between probabilistic foundation models and end-user applications.
Without it, AI agents remain unreliable for any operation involving money, identity, or irreversible state
changes. PersistentAl provides that layer - and in doing so, introduces what we term User Intent
Orchestration (UIO): the paradigm shift from reactive navigation across fragmented applications to
proactive, intent-driven fulfillment via autonomous economic agents.

2. The architecture is purpose-built for deterministic execution in high-stakes contexts. The Haskell core
enforces formal verification at the type level. DBOS guarantees exactly-once execution semantics,
eliminating the class of failures - partial transactions, duplicate charges, orphaned states - that make
current agent frameworks unusable in financial contexts. Trusted Execution Environments (TEE) enable
private inference on sensitive portfolio and identity data without exposure to LLM providers or third-party
tool operators. These are not features added to a chatbot; they are foundational properties of an execution
engine designed for economic activity.

20



3. PersistentAl resolves Telegram's ecosystem fragmentation through a bidirectional transformation: any
TMA, data source, or external service becomes a composable Tool or MCP with defined I/O ports and an
x402 payment endpoint - while any agentic flow built on the platform can itself be deployed as a TMA. Tools
and MCPs compose into unified execution graphs, wherein a single user intent triggers deterministic
traversal across all requisite capabilities. The AG-UI protocol renders context-aware interfaces directly in
Telegram chat as deterministic wrappers around tool outputs - not probabilistically generated code. The
result is that a user types a complex, multi-constraint request into a single Telegram thread, and the
orchestration engine decomposes it into parallel execution across dozens of autonomous tools, settles
micropayments to every economic participant via x402, and renders an interactive, auditable result - all
without the user leaving the chat.

4. Each new Tool or MCP added to the catalog increases what the orchestration engine can compose. Each
new Agent deployed as a TMA generates x402 revenue for its component creators, incentivizing further
specialization. Every tool in every execution graph functions as an independent economic agent - charging
per-inference fees that are automatically split across model providers, tool creators, Agent NFT holders,
data providers, and the protocol treasury. All settlement flows through TetraChain (TON L2), which
provides sub-second finality, immutable audit trails for every execution step, and the throughput required
for agentic micropayments at scale.

5. The immediate product surface is Telegram-native DeFi and commerce - cross-chain portfolio rebalancing,
TON-native agentic commerce via TMAs, intent-driven yield optimization, and portfolio risk management.
These are not hypothetical scenarios; they represent the concrete proving ground where the orchestration
engine, settlement infrastructure, and generative UI converge into experiences that no fragmented
collection of interfaces/bots can replicate.

6. The old paradigm of navigating fifty tabs, ten apps, and three wallets collapses into a single continuous

conversation. With PersistentAl, Telegram transcends its chat origins to become the Universal Intent
Interface.

Appendix 1: Use Cases in Detail

Use Case 1

Cross-Platform DeFi Portfolio Rebalancing with Privacy-Preserving Execution

A retail crypto investor holds assets across three chains (TON, Ethereum, Base) and uses multiple Telegram
bots to track prices, monitor yield, and execute swaps. Today, rebalancing requires manually checking each
position, comparing yields across protocols, calculating optimal allocation, and executing 6-8 separate
transactions - a process that takes 30-60 minutes and is prone to slippage and human error.

With PersistentAl, the user states a single intent: "Rebalance my portfolio to 40% stables, 35% blue-chips, 25%
yield-bearing positions - minimize fees."

The Orchestration Agent decomposes this into a coordinated execution graph:

1. Portfolio Aggregation Tools pulls balances from connected wallets across all three chains via existing MCP
Integrations (e.g., Blum, Nansen, @Wallet).



2. Price Discovery Tools queries DEX aggregators and oracles for real-time pricing and liquidity depth.

3. Optimization MCP calculates the minimum number of swaps required to achieve target allocation,
accounting for gas costs, bridge fees, and slippage tolerance.

4. TEE-Protected Execution processes the user's full portfolio context - including historical positions and risk
preferences - within a Trusted Execution Environment, ensuring that no LLM provider or third-party node

sees the complete financial picture.

5. Settlement Tools help to batch approved transactions through the ASL, splitting execution across chains
and settling via x402 micropayments to each node operator in the flow.

6. AG-UI Rendering displays a before/after allocation chart, a fee breakdown card, and a single confirmation
button - all generated dynamically within the Telegram chat interface.

UC1 PERSISTENTAI

Cross-Platform DeFi Portfolio Rebalancing

End-to-end orchestrated flow from user intent to multi-chain settlement

¥ TON Wallet Ethereum = Solana DeBank % Tonkeeper THA
"

USER INTENT (TELEGRAM CHAT)

° “"Rebalance my portfolio to 40% stables, 35% blue-chips, 25% yield-bearing positions — minimize NATURAL LANGUAGE
fees and keep my allocation history private.”

PERSISTENTAI ORCHESTRATION ENGINE DETERMINISTIC FLOW

(2] [ 3 ]
| 4 Q

|

Portfolio Aggregation Price Discovery Optimization MCP
Pulls balances from connected wallets Queries DEX aggregators and oracles for External solver calculates minimum swaps
across TON, Ethereum, and Solana via MCP real-time pricing and liquidity depth for target allocation, accounting for
integrations gas, bridge fees, slippage
Native Tools Oracles
Netive Tools Multi-chain | External MCP || Solver
-l
¢ $%
TEE-Protected Execution Settlement Tools
Processes full portfolin context within Trusted Execution Batches approved transactions through ASL. Splits execution across
Environment. No LLM provider sees your complete financial plcture. chains and settles wia x402 micropayments.
TEE || Private || Encrypted Native Tools A5l X482
OUTPUT (TE
QUTPU QUTPUT = CHAIN
Dynamic Allocation Chart Verifiable Execution Trace

Before/after allocation visualization, fee breakdown card, and single Complete execution log committed to TetraChain (TON L2) for tax

confirmation button rendered inline in Telegram via AG-UI protocol reporting, avdit purposes, and regulatory compliance

MULTI-CHAIN ATOMIC SETTLEMENT

»
Lid ] - . » - . ry oy v i
'O If a bridge between Ethereum « 50lana fails mid-execution, the flow pauses, preserves state via DBOS, and resumes xaQ2 AP2 ASL

b

avtomatically. All settlement recorded on TetraChain (TON L2Z).

Fig8: Use-case 1

22



Every step is checkpointed via DBOS. If the bridge between Ethereum and TON fails mid-execution, the flow
pauses, preserves state, and resumes automatically when connectivity is restored - the user's funds are never
left in an inconsistent state. The complete execution trace is committed to TetraChain, creating a verifiable
record for tax reporting or audit purposes.

Revenue distribution per inference: The Portfolio Aggregation MCP creator earns their x402 share, the
Optimization Node creator earns theirs, and the user pays a single bundled fee that is transparent and
disclosed upfront. If any of these nodes are tokenized as Agent NFTs, secondary owners earn proportional
revenue from every rebalancing event.

Use Case 2

A Telegram-native user runs a bot-based business and needs to purchase infrastructure - specifically, 3 months
of premium hosting from a TON-native provider. Today, this means manually browsing multiple TMA
storefronts, comparing prices denominated in different Jettons, checking whether providers accept USDT on
TON or require a swap, copying wallet addresses, initiating a transfer via Tonkeeper, and then screenshotting
the transaction hash as a "receipt." There's no unified search, no automated price comparison, no compliance
record, and no single thread tying intent to fulfillment.

With PersistentAl, the user states a single intent: "I need 3 months of premium hosting for my Telegram bot. Find
the cheapest TON-native provider and pay with USDT on TON. Get me a receipt.”

The Orchestration Agent decomposes this into a coordinated execution graph across the TON ecosystem:

1. TMA Discovery MCP queries TON-native service provider storefronts via MCP. It resolves merchant TON
DNS names, checks on-chain reputation through Soulbound Tokens (SBTs), and pulls real-time pricing
directly from storefront smart contracts. Because PersistentAl operates natively within Telegram, this MCP-
connected tool can access TMA catalogs that are invisible to traditional web crawlers - these are Telegram-
native storefronts that only exist within the Mini App ecosystem.

2. Price Comparison Tools normalize quotes across Jetton trading pairs (USDT/TON via STON.fi, DeDust).
They factor in current swap slippage, TON gas costs, and merchant discount tiers for bulk or prepaid
purchases. If the cheapest provider prices in TON but the user holds USDT, the tools calculate the all-in cost
including the swap, so the comparison is apples-to-apples.

3. TON Connect Auth + Compliance MCP authenticates the user via TON Connect wallet signature. If the
selected merchant requires identity verification (increasingly common for infrastructure providers in
regulated jurisdictions), this external MCP generates a ZK proof from the user's Galactica zkCert - proving
eligibility (e.g., jurisdiction, not on a sanctions list) without exposing any personal data to the merchant.
The merchant receives a cryptographic attestation of compliance, not the user's documents.

4. AG-UI Rendering presents the top provider quotes as interactive cards directly in the Telegram chat
interface. Because the system has detected this is a service purchase (not a physical good), it displays
uptime SLAs, bandwidth specs, and support tier alongside price. The Jetton balance is shown inline, with a
swap preview if needed, and a one-tap "Pay with TON USDT" confirmation button. The entire Ul is rendered
contextually via the AG-UI protocol - no redirect, no browser, no external app.

23



5. Jetton Payment Tools handle the x402 payment authorization flow. The user signs a spending authorization
with their TON wallet - a message that grants the selected merchant permission to withdraw a specific token
amount within a defined timeframe. The merchant then executes the transfer against this authorization. If
the user holds the wrong Jetton denomination, the tools auto-swap through STON.fi as a prerequisite step
before the authorization is signed. The settlement is atomic: either the merchant successfully executes the
authorized transfer and the service activation is confirmed, or the authorization expires unused. No partial
states, no orphaned payments.

6. TetraChain Record Tools record the full transaction bundle on TetraChain (TON L2): the payment proof, the
service activation receipt, the merchant's SBT verification, and the compliance attestation. This creates an
immutable, verifiable, and queryable record of the entire transaction lifecycle. Both the user and the
merchant can reference this record for disputes, accounting, or regulatory audits.

24



ucz

— PERSISTENTAI

TON-Native Agentic Commerce via Telegram Mini Apps

From natural language intent - TMA storefront discovery - Jetton payment - TetraChain (TON L2) settlement

B Tetegran Bot ik Merchant THA #1 gk Merchant THA #2

USER INTENT — TELEGRAM CHAT

}

C] TON Connect E STON.fi / DeDust ﬂ TON ONS

"T need 3 months of premium hosting for my Telegram bot. Find the cheapest TON-native provider and pay TON NATIVE

with USDT on TON. Get me a receipt.”

PERSISTENTAI ORCHESTRATION ENGINE  DETERMINISTIC FLOW

PHASE 1 - TON ECOSYSTEM DISCOVERY

B
&
TMA Discovery MCP

Indexes TON-native THA storefronts. Resolves merchant TON DNS
names, checks on-chain reputation (SBTs), and pulls real-time
pricing from storefront smart contracts.

[ External MCP ][ TON DNS J[ THA ]

PHASE 2 — IDENTITY VERIFICATION & USER CONFIRMATION

?i

TON Connect + Compliance MCP

Authenticates via TON Connect wallet signature. If KYC required,

generates ZH proof — proves eligibility without exposing personal
data.

External MCP ][ TON Connect l[ zHH?E.

PHASE % — TON PAYMENT & TETRACHAIN SETTLEMENT

Jetton Payment Tools

Handles x402 authorization. User signs spending — merchant
executes transfer. Auto-swaps via STOM.f1i if needed. Atomic
settlement ar full rollback.

Mative Tools l[ X402 ]| ASL‘

!

——

—

Price Comparison Tools

MNormalizes quotes across Jetton pairs (USDT/TON via STON.Fi,

ODeDust). Factors in swap slippage, TOM gas costs, and merchant
discount tiers.

[ MNative Tools ][ STOM.f1 l [ Delust J

AG-UI Rendering

Presents top provider gquotes as interactive cards in Telegram.
Shows Jetton balance, swap preview, and one-tap “"Pay with TON
UsSDT" confirmation.

[ Hative ‘I AG-UL ‘I THA Inline

D

TetraChain Record Tools

Records full transaction bundle on TetraChain (TON L2): payment

proof, service activation receipt, merchant SBT verification,
compliance attestation.

Native Tools l[ TetraChain ll TON L2 ]

DUTPUTS
USER [TELEGRAH) « MERCHANT (THA) - TETRACHAIN (TON L2)
Service Activation Payment Receipt Immutable Audit Trail
Hosting activated instantly. Confirmation Merchant receives Jetton payment + structured Complete transaction lifecycle — from intent
with access credentials sent inline in the receipt with buyer's ZK compliance proof. to settlement — recorded on TetraChain.

same Telegram thread.

X o
Eriy

TETRACHAIN (TON L2) — SETTLEMENT FINALITY

|

A1l tool invocations, payment events, and compliance proofs settled on TetraChain = purpose-built Layer 2 on TetraChain TON L2 X402 ASL
TON. Sub-second finality, low fees optimized for agentic micropayments.

Fig9: Use-case 2

25



Every step is checkpointed via DBOS. If the Jetton transfer encounters a temporary network congestion spike
on TON, the flow pauses at the payment step, preserves the full execution state, and retries automatically - the
user is never charged twice, and the service is never activated without confirmed payment. The durable
execution guarantee is critical here because Telegram users expect instant, reliable transactions within the
chat UX. Any failure that requires the user to "try again" or manually verify destroys the agentic experience.

The entire flow executes within a single Telegram thread. The user never leaves the chat, never manually
compares TMA storefronts, never copies wallet addresses, and never chases a receipt. The hosting is activated,
the credentials are delivered inline, and the verifiable proof of everything - from intent to settlement - lives
permanently on TetraChain.

Use Case 3

Seeking Yield in the TON Ecosystem

A Telegram user holds a mixed portfolio - 55.4 TON, 1,200 BLUM, and 3.2K USDT - across their connected
wallet. They're earning a passive 8.2% APY and suspect they're leaving yield on the table, but have no idea
which pools across STON.fi, DeDust, or TON Validators would give them a better return for their specific
holdings. Today, figuring this out means manually checking each DEX, comparing APYs that change hourly,
mentally calculating how much of each token to allocate, estimating gas costs, and assessing whether the pool
TVL is large enough to trust.

With PersistentAl, the user types: "I want to optimize my yield. Show me the best opportunities and rebalance."

The Intent Parser (LLM) classifies this as a Yield Optimization intent and decomposes it into a parallel
execution graph - this is a critical architectural point: different intents produce different execution graphs,
which produce different Uls. The same engine that handles risk management produces an entirely different
node composition and rendered output here.

Branch A (Portfolio Analysis) executes and atomic action nodes
simultaneously with Branch B (Market Scanning), which executes and

. Branch A pulls current holdings with USD valuations and allocation percentages. Branch B
queries STON.fi, DeDust, and TON Validators for live APYs, TVLs, pool compositions, and minimum stake
requirements. Both branches run concurrently - the parallel execution is not cosmetic, it halves the data
aggregation latency.

The merged outputs feed into the Risk Assessment Engine ( ), which evaluates
concentration risk, token volatility, pool TVL stability, and smart contract audit status for each candidate
opportunity. This risk context then flows into the Strategy Builder (LLM Reasoning), which synthesizes
portfolio state + yield opportunities + risk scores into a ranked set of actionable recommendations. It calculates
optimal allocations, projected APY deltas, and the specific swap paths required.

The Generative UI Renderer then produces a custom interactive dashboard directly inside the Telegram chat
via the AG-UI protocol. This isn't a static message - it's a dynamically generated interface showing the user's
current portfolio composition, risk score, and three ranked yield opportunities (STON.fi TON/USDT at 24.3%,
DeDust BLUM/TON at 18.7%, TON Validators Staking at 5.2% - greyed out because the user doesn't meet the 10K
TON minimum). Each opportunity has SIMULATE and PROVIDE LP action buttons. A 30-day projection bar
shows the delta: current strategy yields +$25, the optimized strategy yields +$58 - a 2.3x improvement.



When the user clicks EXECUTE ALL, the Transaction Sequencer activates: estimate_gas for all operations >
simulate_swap to validate each trade before committing - atomic execution of all swaps and LP provisions.
The full execution trace is recorded on TetraChain (TON L2). DBOS checkpointing ensures no partial states - if
one of the LP provisions fails after a swap succeeds, the entire batch rolls back.

UCS = FERSLISTENTAL

Intent-Driven Yield Optimization with Generative UI Dashboard

Parallel data aggregation - LLM strategy reasoning - custom interactive dashboard rendered in Telegram

E Blum TMA

la. Hansen

u TONScan

£ vottet ™ E DeDust DEX

v

USER INTENT — TELEGRAM CHAT
"I want to optimize my yield. Show me the best opportunities and rebalance.”

PERSISTENTAI ORCHESTRATION ENGINE

b

Intent Parser (LLM)

v

PARALLEL EXECUTION GRAFH

STON. fi DEX

YIELD OPTIMIZATION

Classifies user intent as "Yield Optimization." Decomposes into two parallel execution branches: portfolio analysis and market scanning. Selects

relevant atomic action nodes from the 12-node library.

LLM Router || Intent Classification !

STEP 2

Portfolio Scan

Executes get_balance and get_portfolio_composition. Pulls current
holdings — TOM, BLUM, USDT — with USD valuations and allocation

percentages.

i get_balance ii get_portfolio_composition i

-.-l-...-
el

Risk Assessment Engine

Merges outputs from both branches. Evaluates concentration risk,
token volatility, pool TVL stability, and smart contract audit

status.
caleulate_risk_score || Herged Context |
5 ERA
ml AG-UI — REMNDERED INLINE IN TELEGRAM

ul YOUR PERSONALIZED YIELD OPTIMIZATION DASHBOARD
CURRENT PORTFOLIO
$494
55.4 TON ($310) - 1,200 BLUM ($84) - 3.2K USDT ($10@)

@ RECOMMENDED ACTIONS

STON.fi TON/USDT Pool
TVL: $2.4M - Risk: Low - Allocate: 20 TON ($112)

DeDust BLUM/TON Pool
TVL: $890K - Risk: Medium - Allocate: SB06 BLUM + 15 TON

CURRENT DPTIHIZED DELTA
+$25 +$58 +$33
B.2% APY 19.4% APY 2.3x better

STEP 5 — EXECUTION & TETRACHAIN (TON L2) SETTLEMENT

On confirmation: estimate_gas -+ simulate_swap - atomic execvtion of all swaps and LP provisions. Full trace

xRy
Ex S ]

recorded on TetraChain (TON L2).

-~ PARALLEL DATA AGGREGATION

. BRANCH B HARKE SCANNING

*

S

¥Yield & Price Discovery

stake requirements.

| sean_yield_opportunities ii get_token_prices
RISHK ASSESSMENT & STRATEGY

&

-

Strategy Builder (LLM)

required swap paths.

Executes scan_yield_opportunities and get_token_prices. Queries
STOM.fi, DeDust, and TON Validators for live APYs, TVLs, and minimum

LLM synthesizes portfolio state + yield opportunities + risk scores
into ranked actionable recommendations with projected APY deltas and

24.3% | SIMULATE || PROVIDE LP |

18.7% I SIMULATE || PROVIDE LP |

LLM Reasonar || Allocation Solver
v
VE | HEBOAF LRENDERE | LEGRAM)
PTEH SCORE
6.2 / 10 Medium
J0-Day APY: 8.2% - A Concentration Risk detected
W

Fig10: Use-case 3

EXECUTE ALL

TetraChain TON L2 x40 ASL

27



Appendix 2: UIO Explained

From User Experience to UIO - the Agentic Experience

Traditional user experience (UX) design focuses on optimizing static interfaces-buttons, forms, navigation
hierarchies. This paradigm worked well for the desktop and early mobile eras when applications were self-
contained and interactions were predictable. However, as Al capabilities advance, we're witnessing a
fundamental shift in how humans interact with digital system:s.

User Intent Orchestration (UIO) represents a new paradigm where users express intent rather than navigate
interfaces. Instead of clicking through menus to find a product, compare prices, and complete checkout, a user
simply states: "Find me running shoes under $100 with good arch support.”" The Al Agent interprets this intent,

orchestrates the necessary operations, and presents results in a contextually appropriate format.

This shift is not merely aesthetic-it represents a fundamental change in the relationship between humans and
software. In the UIO paradigm:

1. Intent Replaces Navigation: Users describe what they want rather than how to get it
2. Context Drives Presentation: The interface adapts to the user's situation, history, and preferences

3. The Medium is Massively Integrated: the entire web of data and apps must be integrated to arrive at truly
holistic UIO

4. Intelligence is Embedded: The system understands nuance, handles ambiguity, and learns from interaction

5. Actions are Autonomous: Agents can complete complex multi-step operations without constant user
supervision

6. Context is Persistent: The system constantly learns from every interaction. Private learning is, of course,
preferred.

Why Telegram is the Ideal Platform for UIO

Telegram has evolved beyond its origins as a secure messaging platform to become what industry observers
call an "Everything App." With over 500 million monthly active users, many of whom hold TON wallets,
Telegram represents the largest ready-made distribution network for Al-powered applications. Users already
conduct a wide range of activities within Telegram:

1. Communication: Personal and group messaging, channels, broadcasts

2. Commerce: Purchases through Telegram Mini Apps, peer-to-peer transactions

3. Information: News consumption, content discovery, community engagement

4. Finance: Cryptocurrency trading, DeFi interactions, payments

28



This makes Telegram uniquely positioned for the UIO revolution. Unlike standalone apps that require
downloads, onboarding, and habit formation, TMAs exist within an environment users already inhabit daily.
The barrier to adoption is dramatically lower-a user can interact with a sophisticated Al Agent simply by
clicking a link shared in a chat.

Understanding the Current TMA Landscape

While Telegram has successfully cultivated a thriving ecosystem of Mini Apps, the user experience remains
fundamentally fragmented. A typical user journey illustrates the problem:

Scenario: A user wants to research an investment opportunity and execute a token swap.
Current Reality:

1. Opens a market research TMA to analyze token fundamentals

2. Switches to a different TMA to check price charts and technical indicators
3. Navigates to yet another TMA to view community sentiment

4. Returns to the wallet TMA to check current holdings

5. Opens a DEX aggregator TMA to find the best swap rate

6. Finally executes the transaction through a separate interface

Each of these steps involves context switching-mentally tracking where you are, what you were doing, and
what information you've already gathered. The user must manually integrate information across multiple
disconnected interfaces. This cognitive overhead is the opposite of Agentic Experience.

The Developer's Burden

The fragmentation problem affects developers even more acutely than users. Building a TMA today requires:
Technical Complexity

1. Frontend development (React, Vue, or vanilla JavaScript)

2. Backend API development (Node.js, Python, Go, etc.)

3. Database design and management (PostgreSQL, MongoDB, Redis)

4. Authentication and authorization systems

5. Payment processing integration

6. Infrastructure deployment and scaling (Docker, Kubernetes, cloud providers)
7. Monitoring, logging, and error tracking

8. Security hardening and penetration testing

This technical stack creates significant barriers to entry. An enthusiast with a brilliant idea for a TMA might
understand the business logic perfectly but lack the full-stack development skills to implement it. Even
experienced developers face months of work to build production-ready infrastructure.

29



Operational Overhead

1. Server maintenance and monitoring

2. Security patches and updates

3. Scaling to handle usage spikes

4, Cost management across multiple cloud services
5. Debugging production issues

6. Managing database migrations and backups

These operational responsibilities never end. A successful TMA doesn't just need to be built-it needs to be
maintained indefinitely.

The Monetization Vacuum

Perhaps most concerning is the absence of sustainable monetization models for TMA creators. The current
options are limited and problematic:

1. Advertising: Clutters the interface, degrades user experience, and earns minimal revenue for small
applications. Users have learned to ignore or actively block ads.

2. Freemium Models: Require building and maintaining two separate experiences (free and premium),
managing subscription logic, and convincing users to upgrade. Conversion rates are typically below 5%.

3. Transaction Fees: Only viable for commerce or financial TMAs, and often require explicit fee disclosure
that creates friction in the user experience.

4. Sponsored Content: Introduces conflicts of interest where the TMA creator's incentives may not align with
user interests. Recommendations become suspect.

5. Data Monetization: Ethically questionable and increasingly regulated. Users are rightfully skeptical of
applications that appear "free" but sell user data.

The result is a tragedy of the commons: talented developers invest significant time building TMAs but struggle
to sustain themselves financially. This leads to:

1. Abandoned projects as creators move to paying work
2. Degraded quality as financial pressure mounts
3. Sketchy monetization tactics that alienate users

4. Consolidation toward larger players who can afford to operate at a loss

The ecosystem needs a monetization model that is transparent, non-intrusive, and directly tied to value
creation. This is where PersistentAlI's Agent NFT economy becomes transformative.

30



User Intent Orchestration: The Single-Thread Experience

The culmination of PersistentAl's architecture is User Intent Orchestration (UIO)-the ability for a user to
express complex desires in a single thread and have multiple specialized Agents coordinate to fulfill that
intent.

Consider a sophisticated scenario:

User: "I want to sell 20% of my crypto portfolio, use the proceeds to buy a stablecoin, and then find DeFi yield
opportunities above 8% APY with minimal risk. Show me the best three options and execute the highest-yield
one after I confirm."

In a traditional fragmented ecosystem, this would require:

1. Manual calculation of portfolio allocation

2. Checking current token prices across multiple exchanges
3. Executing multiple swaps (possibly on different platforms)
4. Researching DeFi protocols independently

5. Evaluating risk factors manually

6. Comparing APY after accounting for fees and slippage

7. Executing deposit into selected protocol
Each step has failure points, requires specialized knowledge, and introduces delays.
With PersistentAl's UIO, the user expresses intent once. Behind the scenes:

1. Portfolio Analysis Subgraph calculates current holdings and determines which tokens represent 20%
of value

2. Price Discovery Subgraph queries multiple DEXes for current rates

3. Optimization Subgraph determines the best execution path to minimize slippage and fees (e.g. 1linch)

4. DeFi Research Subgraph (e.g. DefiLlama, Messari) scans yield protocols, filtering for 8%+ APY

5. Risk Assessment Subgraph evaluates smart contract security, historical performance, and liquidity depth
6. Ranking Subgraph scores options based on yield, risk, and user preferences

7. UI Generation Subgraph creates comparison cards for the top three options

8. Execution Subgraph awaits user confirmation, then orchestrates the multi-step transaction

Throughout this process, the user sees a single coherent interface updated in real-time. The complexity is
hidden. Intelligence is embedded. The experience is seamless.

31



TetraChain (a Layer 2 blockchain on TON) powers the Agentic Settlement Layer (ASL): a high-throughput,
low-latency payment rail for Agent-to-Agent, Human-to-Agent, and Agent-to-Human transactions, enabling
trustless interaction with programmable money and DeFi. That is, every step is recorded on TetraChain,
creating an immutable audit trail. If something goes wrong, the exact sequence of operations can be
reconstructed. If there's a dispute, cryptographic proofs demonstrate what the Agent actually did.

Appendix 3: Technical Architecture Deep Dive

The Flow-Based Programming Paradigm

PersistentAl's development model centers on visual flows rather than traditional code. This represents a
fundamental shift in how developers express computational logic.

In traditional backend development, developers write imperative code that explicitly defines every step. The
developer must handle error conditions at each step, rollback logic if later steps fail, retry logic for transient
failures, logging for debugging, metrics collection, authentication and authorization, and input validation.
Even experienced developers frequently introduce bugs in this complexity.

With PersistentAl, the same logic is expressed as connected nodes in a visual interface. Each node is a self-
contained unit with defined input and output types, built-in error handling, automatic logging, retry policies,
and execution guarantees from DBOS.

Advantages of Visual Flows:

1. Reduced Cognitive Load: Humans process visual information faster than code. The flow structure makes
the logic immediately apparent.

2. Lower Barrier to Entry: Non-programmers can understand and modify flows. Business analysts, designers,
and domain experts can participate in development.

3. Fewer Bugs: Type-safe connections between nodes prevent many common errors. The flow won't execute if
ports are connected incorrectly.

4. Easier Testing: Individual nodes can be tested in isolation. Entire flows can be tested by providing mock
inputs.

5. Visual Debugging: When something goes wrong, developers can see exactly which node failed and inspect
the data at that point.

6. Versioning and Collaboration: Flows are stored as structured data (JSON), making them easy to version
control, diff, and merge using standard tools.

7. Instant Deployment: Changes to flows are deployed without traditional build-deploy cycles. Modify a flow,
save it, and the new version is live.

32



The Node Catalog: 146+ Capabilities

PersistentAl provides a comprehensive catalog of pre-built nodes across 16 categories. Each node is a
specialized capability that has been implemented, tested, and optimized by the platform team. This means
developers don't need to implement common functionality from scratch.

Sample Node Categories:
1. AI & Intelligence

« LLM Call (multi-model support: GPT-4, Claude, Llama, etc.)

e Structured Output (force LLMs to return JSON with specific schemas)
- Chat History (maintain context across conversations)

« Tool Use (let LLMs decide which external tools to invoke)

 Vector Search (semantic similarity search across documents)

- Embeddings (convert text to vector representations)
2. Blockchain & DeFi

« Wallet Connect (TON wallet integration)

« Token Balance (query TON, Jetton, NFT balances)

« Token Transfer (send TON or Jettons)

« Jetton Swap (execute DEX trades)

 Contract Call (interact with arbitrary TON smart contracts)

« Event Listener (react to on-chain events)
3. Data Transforms

 JSON Parse/Build (convert between JSON and objects)
« Array Operations (map, filter, reduce, sort, group)
 Object Transform (reshape data structures)

« Type Conversion (string to number to boolean to date)

« Schema Validation (ensure data matches expected structure)
4. Flow Control

« Branch/Switch (conditional logic)

 Loop/Iterator (process collections)

- Parallel Execute (run multiple operations concurrently)
« Durable Wait (pause execution until an event occurs)

« Subflow Call (invoke other flows as subroutines)



This catalog is continuously expanding. The platform team adds nodes based on community requests.
Advanced users can even create custom nodes and contribute them to the public catalog (earning node
operator revenue when others use them).

Port-Based UI Binding

One of PersistentAl's most innovative features is treating Ul components as first-class ports in the flow. This
creates a reactive binding where interface elements update automatically when connected data changes.

Traditional architecture separates backend and frontend. The frontend must explicitly fetch data, parse
responses, update local state, and trigger re-renders. This creates substantial boilerplate code and
opportunities for desynchronization.

PersistentAl's port-based model connects flow node data output ports directly to Ul component data input
ports. When the node produces new data, it flows directly to the Ul component. No manual state management.
No fetch-parse-update cycle. The binding is declarative.

For example, a trading dashboard displays current token prices. The Price Feed node emits new prices as they
arrive, and the chart updates automatically. If the chart component is removed from the UI, the connection is
severed automatically. If multiple UI components need the same data, they all connect to the same output port-
no additional fetching required.

This eliminates entire classes of bugs:

1. Stale data from caching issues
2. Race conditions from concurrent updates
3. Memory leaks from uncleared intervals

4. Desynchronization between multiple UI elements showing the same data

34



Comparison with Traditional Approaches

Traditional TMA vs Generative TMA

TRADITIONAL THMA

| . ' Backend
User i Static UI s API Calls — gttt B Database

Logic

Fixed Response

Problems:

« UI defined at build time, can't adapt to context
- Backend code must handle every possible scenario
» Integration complexity grows with each new feature

- User experience Llimited by developer's imagination at build time

GENERATIVE TMA (PersistentAlI)

User AI Agent Flow Generated
e —» —»
Intent Interprets Executes UI
"Show me Understands Queries data, Henders
tending user wants applies logic, dynamic
tokens" market data formats output charts &
visualization cards
Advantages:

« UI adapts to user intent and context in real-time
- Flow logic handles any scenarioc through composition
* New capabilities added by connecting nodes, not writing code

« Experience evolves based on vser behavior and preferences

Figl1: Traditional TMA vs Generative TMA

The GenAl Platform Alternative

Some might argue: "Can't you just use LangChain, AutoGPT, or other Agent frameworks?"

These tools are valuable but solve different problems:

1. LangChain/Llamalndex: These are libraries for building AI applications in code. They reduce boilerplate
but still require developers to write Python or JavaScript code, manage execution infrastructure, handle
persistence and state, build Ul separately, implement payment systems, and deploy and scale. They make
building Al features easier, but you're still building a traditional application.



1. LangChain/Llamalndex: These are libraries for building AI applications in code. They reduce boilerplate
but still require developers to write Python or JavaScript code, manage execution infrastructure, handle
persistence and state, build UI separately, implement payment systems, and deploy and scale. They make
building AI features easier, but you're still building a traditional application.

2. AutoGPT/BabyAGI: These are autonomous Agent systems focused on goal-driven behavior. They're
impressive demonstrations but require significant compute resources, have limited practical reliability,
don't integrate with blockchain, lack monetization infrastructure, and are designed for research, not
production applications.

3. PersistentAl's Differentiation:

« No-code development for most use cases

Durable execution guarantees operations don't fail silently

Native blockchain integration for payments and ownership

AG-UI protocol for dynamic interfaces

Built-in monetization through Agent NFTs

Telegram-first design for maximum distribution

Deterministic Execution and Auditability

Security, Verification, and Trust: Given that PersistentAl Agents handle financial operations and sensitive user
data, security and verifiability are paramount.

Every operation executed by a PersistentAI Agent is recorded with cryptographic integrity on TetraChain, a
Layer 2 blockchain on TON. This creates an immutable audit trail that can be used for:

1. Dispute Resolution: If a user claims an Agent executed an unintended operation, the complete execution
trace can be reviewed. Every decision point, every API call, every piece of data processed is recorded.

2. Compliance: Regulated operations (financial services, healthcare, etc.) can demonstrate compliance by
providing auditable records of all Agent actions.

3. Algorithm Transparency: Users can inspect the decision-making process. If an Agent denied a loan
application or made an investment recommendation, the reasoning is transparent and verifiable.

4. Fraud Prevention: Malicious Agents that attempt to deceive users leave evidence on-chain. Reputation
systems can incorporate this data, and users can avoid Agents with suspicious behavior.

The Verifiable Execution Stack

PersistentAl's verification model has six layers:

1. Flow Definition Hash: The Agent's logic (the flow of connected nodes) is content-addressed. Any
modification to the flow produces a different hash, preventing silent changes.

2. Input Hash: User inputs are canonically encoded (using CBOR format) to ensure identical inputs always
produce identical hashes.

36



3. DBOS Checkpoints: Each node execution is persisted with state snapshots, enabling deterministic replay.

4. Provider Attestations: External services (LLM APIs, data feeds, oracles) sign their responses, creating
cryptographic proof of what data was provided.

5. State Root: The final state of all variables is hashed into a Merkle tree, producing a compact state root.

6. TetraChain Settlement: Batch commitments are submitted to TetraChain L2 with optimistic finality (less
than 3 seconds). A 24-hour dispute period allows anyone to submit fraud proofs if execution was invalid.

If a dispute arises, any party can:

1. Download the complete execution trace
2. Replay the Agent's operations locally
3. Compare their replay result with the on-chain commitment

4. Submit a fraud proof if discrepancies are found

This creates strong economic incentives for honest behavior: sequencers who submit invalid commitments are
slashed, losing their stake.

37



	PS_Orchestration Engine_1
	PS_Orchestration Engine_2
	PS_Orchestration Engine_3
	PS_Orchestration Engine_4
	PS_Orchestration Engine_5
	PS_Orchestration Engine_6
	PS_Orchestration Engine_7
	PS_Orchestration Engine_8
	PS_Orchestration Engine_9
	PS_Orchestration Engine_10
	PS_Orchestration Engine_11
	PS_Orchestration Engine_12
	PS_Orchestration Engine_13
	PS_Orchestration Engine_14
	PS_Orchestration Engine_15
	PS_Orchestration Engine_16
	PS_Orchestration Engine_17
	PS_Orchestration Engine_18
	PS_Orchestration Engine_19
	PS_Orchestration Engine_20
	PS_Orchestration Engine_21
	PS_Orchestration Engine_22
	PS_Orchestration Engine_23
	PS_Orchestration Engine_24
	PS_Orchestration Engine_25
	PS_Orchestration Engine_26
	PS_Orchestration Engine_27
	PS_Orchestration Engine_28
	PS_Orchestration Engine_29
	PS_Orchestration Engine_30
	PS_Orchestration Engine_31
	PS_Orchestration Engine_32
	PS_Orchestration Engine_33
	PS_Orchestration Engine_34
	PS_Orchestration Engine_35
	PS_Orchestration Engine_36
	PS_Orchestration Engine_37



